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Abstract. We obtain conditions for the SLLN to hold for some classes of processes with

finite ath-moment, 1 < a < 2, which in addition are Fourier transforms of random
measures. With this spectral approach, we also give conditions for the pointwise ergodic

theorem to hold, for some classes of operators between La—spaces, l1 < a < 4o. In
particular, we find a criterion which applies to invertible linear operators T on L2 such that
sug ||Tn|l < +o. Some random fields extensions are also studied.
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1. Introduction O 3

The criterion, obtained by V- F. Gaposhkin {G1], for a (weakly) stationary process to
satisfy the strong law of large numbers (SLLN) has had various extensions, in particular to
second order non-stationary harmonizable processes, ({G2], [R], [D]).. Outside of the
L2—framework, it has also been studied for Fourier transforms of independently scattered
symmetric a—stable (SaS) measures in {[CHW]).. It is shown here that via this spectral
approach, neither the L2—requirement nor any distributional assumption are indispensable
in establishing the SLLN. Only the harmonic representation with respect to a bounded (in
a sense to be made precise) random measure is crucial. This is illustrated in the gresént
work, where we obtain conditions for the SLLN to hold for some classes of processes with
finite d’m—monient which, in addition, are Fourier transforms.

It is weil known that >sitétior;a.ry processes and unitary groups of operators are
interchangeable, and so are the corresponding strong law and pointwise ergodic theorem.
This type of duality between operators and processes carries over to our framework,
although in general, the operators are not shifts. It is, thus, also the purpose of our work
to obtain the pointwise ergodic theorem, for some new classes of operators between
La—spaces, l<a<+4om - S

We now give a brief description of the content of this paper. In the next section, we
set the stage. We introduce the processes under study and also illustrate the scope of our
approach with various examples. Section 3 is the core of the paper, and ergodic properties
of processes are developed. These results recover some classical strong laws such as the
ones for orthogonal random variables, martingale difference processes, etc.. In section 4,
we adapt our framework to operators to give a criterion for the pointwise ergodic theorem
to hold for some new classes of operators between La-Spa.ca. This also recovers some
classical results. In the last section, we discuss some random fields generalizations.

Acknowledgement: The reinterpretation of our results in an operator theoretic framework,




i.e. Section 4, stemmed from conversations with Karl Petersen for which the author is

heartily thankful.

2. Preliminaries

Let (2,8,7) be a probability space and let L%(Q,8,7) (L%®) for short) be the
corresponding space of complex valued random variables with finite ath—moment, 1<a<?
and let also L°(2,8,7) be the space of random variables. On La(7’) the norm, i.e,,
(&t |a)1/a’ is denoted by || ||a where £ the expectation. Finally, throughout, K denotes a
generic absolute constant whose value might change from an expression to another.

We now recall some terminology and results which are in [H1-H3]. A (strongly)
continuous (norm) bounded process X : R —— La(7) is (a,8)-bounded, 1 < 3 < +o, if and

only if there exists a finitely additive Z : BO(R) —_— LO(T) of bounded (a,3)-variation

A .
such that Xt = lim J (1—1_{_L)elt€dZ({) in L%?), uniformly on compact subsets of R,
A-+o YA A

and where B (R) are the Borel sets with finite Lebesgue measure. For § = +u, Z is

o-additive on the Borel sets B(R), the exponentials become Z-integrable, and

A . .
lim J (1-LeD)e'édz(6) = J e'$4Z(¢). For @ = 2, (aw)-bounded processes are also
A-+o /=) A R

known as (weakly) harmonizable and when €Z(-)Z(-) : BR)xB(R) —— C, extends to a

measure on B(R2) they are (Loéve or strongly harmonizable). For Z orthogonally scattered,

i.e., EZ(A)Z (B) = 0 whenever AN B = ¢, A, B € B(R), the process X is stationary. For 1
< @ < 2, a typical example of random measure Z is an independently scattered isotropic
SaS with finite control measure in which case, Z has finite (p,o)-variation for any 1 < p <
a. To illustrate the scope and the applicability of our results we now present some less
typical examples (we do consider the case a > 2 for future considerations on operators
given in Section 4). A discrete time orthogonal process X = {Xn} with £|)(D|2 <Kis

(2,2)-bounded (see [H1]). By taking i.i.d. Bernoulli (or Rademacher) random variables via




Khintchine inequality we can get (@,2)-boundednesss, 1 ¢ a < +w. For less “independent"”
examples, let @ > 2 and let X : I —— L%*?) be a norm bounded martingale difference

process. Then, by Burkholder's and Minkowski's inequality we have
N N
< a 2:v2 pa/2
12 PXollg < KILE IPIIXG NIgys
N
2 2
<K (S 1B N )
i= i

N

2\a/?2

<K supuxn,ng{_zllm ya/2.
1 1=

x .
Again, X is (.2)-bounded, but for @ > 2, hence, X_ = | e"%dZ(€), n € T, where Z is
g n =)

"dominated" by Lebesgue measure. In all these examples, X and Z can be recovered from
one another by inversion formulae.
Since a (a,f)-bounded process X is strongly continuous, we can assume that it is

(t,w)-measurable with locally integrable sample paths and the averages aTX(w) =

T
%TJ X(t,w)dt, T > 0, w € Q, are well defined. We then say that X satisfies the SLLN
~T

N
whenever "}‘Lr:: oTX(w) =90 (Lim Q—‘lmni-NXn(w) = 0 in the discrete time case), for

almost all w (we will usually omit the reference to w, e.g., write 0. X for aTX(w)).

We now state two majorizing lemmas which are needed thereafter. The proof of the
first one is a zero complexity extension (replacing Cauchy-Schwarz's inequality by Holder's
inequality) of a result of Rousseau [R}], which goes back to Gal and Koksma [GK], and so is
omitted. The second one, which for a = 2 is just one of the various form of the famous
Grothendieck's inequality, can be found in Pisier [P} and [H3].

We need some more notation. Given any integer p 2 0, an integer n > 2 such that

p .
2P <n< 9P+ pas a unique binary decomposition n = 2 +14+ 3% cj2p—-', where ¢ =
=1
(‘1"""p) € {0,1}P. Hence, to any such n, i.e., to any sequence ¢ € {0,1}P we can also




4
associate the (finite) sequence
k .
Pi1+ % (j2p_‘l, k=1,2,...p
apl €, = =1
K(6P) oP j -

With these notations and if a, is short for a, (¢,p), we have.

Lemma 2.1. Let {zj} be a sequence of complex numbers and let {tj} be a sequence of

positive numbers. Then. for any p> 1 and 1 < a < 2, we have

n p ! P a
max | T z|% (£ {17 )*I( T £ | = 51%.
2p<n$2p~+~1 j=2P41 k=1 k=1 (cl,...,ck)E{O,l} j=a,_,+1

Lemma 2.2. Let the process X be norm bounded, strongly continuous and ( a,»)-bounded,
1 < a <2, with associated random measure Z. Then, there exists a finite positive measure v

such that
2.11/2
I, a2l < (] 10170072, (2.1)
R % R
forallfe L2(u) (the functions which are square-integrable with respect to dv).

It is clear, that whenever X is strongly continuous and (e,B)-bounded, the Fourier

representation as well as the boundedness property give ’}‘im opX = Z(0), in L%?). But,
]

it is also well know that, even in the stationary case, Z(0) = 0 a.s., is not a sufficient
condition for the SLLN to hold. Similarly, it is not because ihe dominating v is (2.1) is,
say, the spectral measure of a stationary process satisfying the SLLN, that the dominated
X satisfies the SLLN. After all, (2.1) is just a norm estimate. However, this norm
estimate is a strong ingredient in obtaining a criterion for the almost sure convergence of
the ergodic averages.

To finish our preliminaries, we say that a dominating measure v in (2.1) is



k

o
a/2-atomisticif ¥ v{2~ °1<I5152—k}a/2 < +o. It is clear that for a = 2, v is always

a/2-atomistic and such is also the case for 1 < a < 2 when dift) = {t)dt, ve€ LTR), 1 < v

< +o, or when v is discrete with jumps jk such that
0

o
)y
k=

3. The Spectral SLLN

With the result of the previous section, our approach in proving the SLLN follows
classical paths. The first of which is another lemma showing that we can reduce the
problem to the dyadic subsequences. We prove our results only for the more interesting
situation of continuous time processes with also 8 = +w, discrete time result are obtainable
in a identical fashion. The case § < +« will be worth a separate statement (Theorem 3.6).
Finally, throughout this section, and unless otherwise stated, (a,m)-bounded is short Jor

strongly continuous, norm bounded, (a,0)-bounded, with also 1 < a < 2.

Lemma 3.1. Let X be (ax)-bounded with a/2-atomistic dominating measure, then

lim max | 0, X-0 X |=0,(as.?).

Prtoob. [ (Pt 2P
Proof. As in the harmonizable case (strong or weak, see Rousseau [R] or Dehay [D}), and

n
since anX -0 X=12 (an - ”j—lx)’ applying Lemma 2.1 with its notation, we get

p
& j=oPy
£ max |anX—opX|a
9P p P! 2
P (1-a) L1, B k
<(B {0 el gy gk g £lo, X-a. X[9. (3.1
k=1 K k=15 (€] ,.q)efo, % % )

To prove the result, it is enough to show that £ max IonX -0 pXI @ i3 the general
9P<ncoPt] 2




term of a convergent series. Since X is (a,)-bounded, for any T > 0 we have aTX =

J (ﬂ.’l‘.zlﬁ)dzu) and by (3.1) and (2.1), it is in turn enough to show that
R

2 a2

sin a, £ sin a, ,¢§
kTR agg) ) (3.2)

3¢ ¢

k

( g t‘((l—a)_l)a—l(
k=1

I Mo

t,2° max {j
k kIR

k €c{0,1}

1

is itself the general term of convergent series. To do so, and as for stationary or
harmonizable processes, we divide R into four pieces, {| €] < 2—p—1}’ {2—p'l< | §|52—p+k},
{2’p+k< [€] <1}, {|€] > 1}. We then use the triangle inequality and proceed to estimate
each one of the resulting four sums. The estimates over the four different regions are

similar and so we just give the details for, say, the second region. Since
2

sin a, ¢ sin a, ,§
k k-1 < Klak—a,k_l |2/|ak_1 |2 < K2(p-k)2/ 22p’ we have

S Y
. . 2
sin a § sin ak_1§ af2
{J{2“H<|£|sz“p+“} i
—ak af2
| Pl crrrig™O

With the previous inequality and taking ty = tk, l<t< 20"‘1, we get

. . 9
® P k sin akf sin ak—lf‘ af2
L(Z 2 _ .

<K P (E t“2“2""‘f an &)}/
p=1 k=1 (2Pl c 2Pty
@ P P
=K T (% tk(l-ak g . AU/,

® p _ p i 3
<K T (5 kl-akg  omlo1<9}9/2) gince a<2.
p=1 k=1 j=p-k




Now, by rearranging its terms the above series becomes

® . s ® j +k _
KT oo e h2 s Ty kpll-ak
j=0 k=1 p=max(},k)

(1-a)k

® . . ®
<KEZ 1/{2’1"1<l£|$2ﬂ}0’/2 z (k+1)tk2 < +w, since v is a/2-atomistic.
j k=1

=0

- -1
Finally, { % {179 301 ¢ (141700 471 and the sum (3.2) with R replaced by
k=1

sin akf sin a, ;¢ 2

CX I
K|€|2|ak-ak_1|2 < K|£|222(p—k) and proceed similarly. The third series can be
2

{2—p_1<[§|52“p+k} is thus finite. For the first region, we use

sin a, sin ap_,§
estimated usin -
8 3¢ 318

[Fal

2
< Ktak’ak-l‘/lak_lllfak_ll !

. . 2
sin akf sin ak—lf

3¢ ¢
K/la,_ €12 <K272P/|€|% Thus (3.2) is finite, and the result foliows. .

Kz(p"k)T?p/]fll. To estimate the last sum, we use

We now state the main result of this section, a criterion for the SLLN to hold for

(a,»)-bounded processes with a/2-atomistic dominating measure.

Theorem 3.2. Let X be (a,o)-bounded with random measure Z and a/2-atomistic
dominating measure. The following conditions are equivalent.

(i) Foraa. w, lim opX(w) exists.
T-+w

(ii) Fora.a. w, lim Z{|£] < 27P}(w) exists.
p~+w

Under either condition, and for a.a. w, 1im opX = lim 2{|¢] < 2P} = Z(0).
T-w ptwo

Proof. Again, as in the L2 case (stationary or harmonizable)

opX = (06X - 0 X) + (0, X - 02PX) + (asz ~Z{|1& < 27P)) + 2{j¢€] < 27P).




Since "xt”a ¢ K, arguments similar to the ones of Proposition 1 in [R] gives
lim  sup laTX—anXI = 0 a.s., and the first parenthesis converges to 0 a.s.. The
n~o n<T<n+1
middle parenthesis is taken care of by the previous lemma. For the third parenthesis ,
to conclude that 1im ¢ pX(w) -2 {|€] < 27P}(w) = 0, a.3., we again wish to show that
p+o 2
Elo pX -7 {|€] < 27P}|® is the general term of a convergent series. But, using the
2

triangle inequality as well as Lemma 2.2 we have,

[+ ]
i} Py (@
) E Elo X-2{l¢l <2 P

p=1
®
< T
p=1

To prove the result, it is thus again enough to show that both series converges. We

sin 2p§ ~1 2
2P¢

{l€]227P)

sin_2P¢|? o/
5 o)t

2P¢

J{|c|<2“’}

provide the details only for the first integral. Since < K22p| §|2, the first

sum is dominated by
® ®
K22”{2J " L €12 eyel?
p=1  k=p {27 <[] <27}

o®
<K T 29
=]

Q®
p —

k=p

¢ +] [« o}
<K £ 29 T 27K g7klg g oKy 0/2
p=1 k=p

o k
=K £ 27,0k e <o)/ 5 gop
k=1 p=1

<K
k

18

[ ]
1u{2_k_15|{|<2-k}a/2 +K T 279Ky g7k g1 <27y 2 ¢ 4
=]




Using

. 2
~i___§’“p2p ! < K/|2p§[2, the second sum can be estimated in a similar way. Thus,
25

lim (¢ X~-2{|€] <27P}) =0 (as. 7). Finally, (a»)-boundedness via Lemma 2.2 give

P oP
lim Z {|€] < 2P} = 2(0) in LY(?), and the result follows. .
prw

Before restating Theorem 3.2, in an essentially equivalent way, we need to

introduce some more notation. Let ¢, = ]IJ dZ(9)l o 3nd let Z; =

1 e qe) < 2™
c'{J e . dZ(ﬁ)}forck>Oande=0whenck=0,k21.
kg <07

Theorem 3.3. Let X be (a,x)-bounded with random measure Z and a/2-atomistic
dominating measure. Then, X satisfies the SLLN if and only if one of the following
equivalent conditions holds.

(i) Fora.a. w, lim Z{|¢] <2 P}w) = 0.
Pt

p
(ii) Fora.a. w, lim ¥ ¢ Z, exists, and Z(0) = 0.
pto k=1

Proof. In L%?) and by (a,x)-boundedness, we have J 2(6) =

_.d
{0 < l¢l < 2P
y dz(¢) g ¢, Z,. Since by (a,0)-boundedness, Y ; ¢, Z, €
) = . )~ Y =
et 1 <t K Kk

k: k:p k=l
a Pl a
LY(?), we also havej 42(§) = U0) + Y - T 2, (in L)), and the result
(¢l <27P) k=1
follows from the previous theorem. a

Remark 3.4. In the above results, 2 can be replaced by any integer > 2. The
a/2-atomistic requirement is also not minimal since for "harmonizable" non stationary

-k~-1

o
stable processes, the condition: kE v{2 <|§|52’k x ]—x,ﬂ}p/a < 4w, 1 < p < a,

where v is the finite two dimensional "spectral" measure corresponding to the

independently scattered SaS random measure, will also do the job. We note too that for a




-

10

general independently scattered Z, the above Zk are independent random variables. Hence,

N
since lim & cka = Z(0) (in LO’(?)) and since by independence convergence in

N-+o k=1
probability and almost surely of the series are the same, we have for a.a. w, lim Z{|¢| <
p-+tw
2 Plw) = Z(0) Again, in the non-stationary stable harmonizable case,

= (k-1 —k p/a P
v{2 <|€|€27 x |-n,7]} < 4+, | < p < a, and Z(0) = 0 gives the SLLN. We
=0

do not know, however, if the mere condition Z(0) = 0, is sufficient to give the SLLN.

Finaily, by analyzing the above proofs, it is also easily seen that under the less stringent

® a0
requirement: I ( Z 92k u{2—p—k—l<|§|$2—p_k})a/2 < +o, Theorem 3.2 and 3.3
p=1 k=0

continue to hold. Again, we note that in the stable case this last condition can, as above,

® ™ .
be replaced by T (kE g2k 11{2—n_k-1<|£l52—n k} x ]-t,r])p/a < +o,l <p<a.
n=1 k=0

In our framework, the sufficient conditions given by Gaposhkin in the stationary case

or by Dehay in the weakly harmonizable case for the strong law to hold, become:

Theorem 3.5. Let X be (a,o)-bounded with a/2-atomistic dominating measure with also

IIZ(O)IIO = 0. If there exists a finite positive measure v on (R2, B(R2)) such that

(i) IZ(A)lg € AAxA), A€ B (R)

.. 1 2 2
(ii) ”{0< €Lin] <6}(10g21<)g2 m)a/ (log2log2 Tl”-l—)a/ d(€,n) < +w, for some § > 0.

Then, X satisfies the SLLN.

Proof. To prove the assertion, it is enough to show that the sequence Z{|¢| < 27P)
converges with probability 1, and to do so, we again show that £]Z{0 < |¢] < 27P}|% s
the general term of a convergent series. Our proof is only sketched since similar to the one

devised by Dehay [D}, for a = 2. First, for 29 < p < 29%1, we have Z{|¢| < 27P} = Z(0)




t y

+ 2{0 < |€] < 2_2q} -2 P < gl < 77 } But, by (i) and (ii) above with q  any

integer such that 2_2q0 < §, we have if Aq ={0< € < 972 } and, if log denotes the

logarithm of base 2:

AN E HAAY

qa=q, q9=q,

(Vo

E o agen, (8 1) Pttoglog ) /2t

4=,

¢ (loglog +)%X(10glog i)/ 2afe,n) £ ¢
U{0<|e| mi<p 14T m a=q,

—a
Hence, lim Z{0<|€]<22} = 0 as. For {2 P < |¢| < 2 }letBk—{2 k
r-+ow

<] <

-1 —0+l 24 :
2 } where a, is defined as before, and let C q= {2 <€} <27 ). Applying

Lemma 2.1 with b = 1 as well as (i) and (ii) we get

+ o _ _o4
£ & max |2{2P<lEl <272y

9=0, 94cp¢odtl

+o q

£ ¢l = Z(B.)|®
quqoq (kzl(cl,...,tk)E{O,l}k Izt k)“a)
TR g (z ACAC)) ¢ % %UCyxCy)
- q=q0 k= k™ k q= qoq q

<

0/2 1 a/2d .
'”{o<|§|,|q|<5}(l°gl°gm ('°3°8rT) nEn) < +

24
Hence, with probability one, 1im  max 2{2-1) <€l <2 2

g+ 2q<p$2q+l

}=0. .

Remark 3.6. The construction given by Feder [F} can be easily adapted to give a discrete




R

time (@,2)-bounded (hence (a,x)-bounded) process X such that o pX diverges on a
2

arbitrary set of positive measure. In fact, such X can be chosen with absolutely continuous

dominating measure deft) = p(t)dt, v € Ll(]—x,x]) by also adapting the arguments in [G1).

We now present the SLLN for (a,3)-bounded processes when 1 < § < +w, for which

the results are simpler.
Theorem 3.7. Let X be (a,5)-bounded, 8 < +, then X satisfies the SLLN.

Proof. From the very definition of (a.3)-boundedness (see [H3]), when 8 < +« we have

|1J fdz) , < (J (1)1 %40/, for all £ € LI®), hence, I1Z(0) , = 0. Furthermore X is the
R R
uniform limit on compact sets of Cesaro averages, hence for any T > 0 we have aTX =

A .
lim J (1-L£1) sine a2(¢) = JR(S‘J;?B)dZ(g) (Z has finite (a,8)-variation, 8 > 1,

A-+o =2
sin T

hence L‘B(R)—functions are Z-integrable and € Lﬂ(R)). Now, repeating the steps in

Theorem 3.2 and 3.3, using also Holder's inequality give the result. "

Remark 3.8. When a = § = 2, e.g., for martingale difference or orthogonal processes, our
results are not optimal, in the sense that the rate of convergence can be improved. By
techniques similar to the ones in Theorem 3.7, or via Theorem 3.3 (ii) with an appropriate

extension of the classical Rademacher-Menchov theorem it can be shown that with

N
. : ] .
probability one, Lir: 7 2N+lfog3’€(?Nmn£.an(w) =10, ¢> 0. For = 4w, it can also
be shown with the above techniques and as in [Gi], {G2], [R]. and [D] for a = 2, that
lim (LogLog?T)‘a/zaTX = 0, with probability one. The LogLog speed being the best
T
possible. The various necessary or sufficient conditions given in the works mentioned

above admit also a—counterparts. Finally, for stationary processes, Theorem 3.7

corresponds to the SLLN for processes with spectral densities f € LH‘(R), € > 0.
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4. The Pointwise Ergodic Theorem

In this section, we now turn our attention to operators and introduce first some
definitions which parallel the corresponding notions for processes. Throughout this section
we replace our probability space (2,8,7) by a measure space (also denoted (2,8,7)), and we
extend the range a beyond 2 and assume that 1 < a < +w.

Let B(L®) be the algebra of bounded linear operators on L%?) equipped with the
strong operator topology and let ||-|| denote the usual norm on B(La). Throughout, let

also T : R —— B(L®) be an operator function, i.e., let T be bounded (sup IITtglla <K, g
t

€ L%7?)) and measurable (t —— Ttg is strongly measurable). Since T is bounded,

J f(t)Ttdt is a well defined Lebesgue-Bochner integral for any f € Ll(R). Recalling that
R

for < +w (resp. = +), || “ﬂ is the norm on Lﬂ(R) (resp. on CO(R)) we set.

Definition 4.1. An operator function T is (a,3)-bounded if there exists K > 0 such that
I fertan <k Il
R
forall fe LOR)Y = {fe LY®): T e LAR) } (f € L'(R) when 8 = +«).

A function E : BO(R) —— B(L%) is called an operator measure whenever it is finitely
additive and a spectral measure if in addition it is multiplicative, i.e., E(ANB) =
E(A)E(B), A, B ¢ BO(R). The relation between operator and spectral measures is easy to
draw: an operator measure is a spectral measure if and only if it is projection valued (this

can be proved as in Helson [He]). Clearly, these projections are also commuting

projections.

Definition 4.2. An operator measure E has finite (a,8)-varistion if [JH]l = sup{ [|EI(A):

A € B (R)} < +w, where [[[E|(A) = sup( ||.glla..|E(A.l)|| : {Ai}'; C B(R) partition of A, a, €
1=
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N
CIZax llget}
i=1’AiB

For any g € LY. Eg given by Eg(A) =E(A)g, A¢ BO(R), defines a random measure.
Furthermore, by uniform boundedness. [JEJJj(A) < +w if and only if for every g € L%(P),

N
I“Egjll(A) < +x where IIIEg]“(A) = sup{ llizlaiE(Ai)glla : {Ai}¥ C BO(R) partition of A, a, €

N
€IS ax, ;< 1) The integral J'Rf(g)da(c) of the scalar function f with respect to the
i=1 LA

operator measure E of bounded (a,f)-variation can now be defined as the element of B(La)

for which (JRf(g)dE(ﬁ))g = JRf(f)dEg(é), g€ L%?). A more direct definition, without any

appeal to the random measures Eg, can also be given using the norm ||-||. For E of
bounded (a,d)-variation (4 < +w), any f in LR) is integrable with respect to E, while for

3 = +«, the Borel bounded functions are also E-integrable. Moreover, ||JRf(§)dE(§)gH o

1A 161 gl for £ € LOR) and g € L)
With the above definitions we can state our first result.

Theorem 4.3. An operator function T is continuous and (a,8)-bounded if and only if there

exists a (unique regular) operator measure E with finite (a,f)—variation such that T =

A
/l\im J e'tde(f) (in B(LO’) with the strong operator topology), uniformly on compact
40 J—=A

subsets of R,

Proof. Let T be continuous and (a,f)-bounded, then for any g € L%?), {Ttg}tek is an
(a,B)-bounded strongly continuous process. Thus, [H3, Theorem 3.2] (actually Theorem
3.2 there is stated in terms of the triangular kernel, but the proof carries over to the step

kernel case) there exists a (unique regular) random measure Z
A

g with finite (a,f)-variation

such that Ttg = lim eitfdzg(g), in L%?), uniformly on compact subsets of R.

A-+o =)
Moreover, ngm <K and IIZS(A)Il af Kligl o forevery A € BO(R). Hence, E : B,R) ——




-

|

15

B(L?Y) defined via E(A)g = Z_(A), g € La(?) satisfies all the stated requirements. For the

X

converse, let T = lim J eitde(f) in the strong operator topology, uniformly on
A=+x Y=

compact subsets of R. Then, again by Theorem 3.2 of {H3] and for any g € LY?), {Ttg}tek

is strongly continuous with moreover "JR f(t)Tt'gdtlla < |||Eg||| "f"ﬂ' Since |||Eg]|| <

E gl o the result follows. .

Remark 4.4. Since L%(?) is weakly complete, we were able to replace the relative weak

compactness of the sets {IIJR f(t)TLgdtlla: ||?||[35 1, fe Lﬂ(R)v (fe LI(R) when § = +w)},

g € L%?), by their boundedness. For § = +w, E can be defined on B(R) and is also

o-additive (in the strong operator topology). Hence, by dominated convergence and since

A .
the exponentials are E~integrable we have 1im J enEdE(f) = JRe'tde(f), t € R, and

A-+o VA
this recovers a result of Kluvanek [K]. For @ = 2 and § = +w, T will be called
harmonizable even strongly harmonizable whenever SEg(-)E (+) can be extended to a

g
complex measure on RZ,

Corollary 4.5. Let T be continuous and (a,3)-bounded with associated operator measure

E. Then, T is additive, i.e., T"*® = T'T® for all t, s € R, if and only if E is multiplicative.

Proof. Let E be multiplicative, then for any simple functions f1 and f2 with bounded

Support, kal f,dE = JRfldE J Jfa0E: By (a,f)-boundedness, this equality can be extended

to Borel bounded functions, since they can be uniformly approximated by simple functions.

A z A
It thus follows that T*S = 1im [ e(**9)¢4E(¢) = 1im J e"de(g)j G
Ao 9= Ao =) -A

- X
= lim J e'$4E(€) 1im J eIS$dE(¢), since each individual limit exists. Hence, T4
A-o+wd = A2+m Y=

= TS, For the converse, since TS = T"Ts, and since the trigonometric polynomials of

period 2P are uniformly dense in C([-P,P]), we have for any f,, f, continuous with compact
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support [-P,P] and for A large enough JRfldeE = JRfldE J deE. Hence, for any Borel
R

bounded fl and f.‘2 (by the domination property, this is immediate for 3 < +w). Now, we
can approximate a.s. a Borel bounded function by a bounded sequence of continuous
functions with compact :;u;;port. Hence, For § = +, since E can be chosen to be
o-additive on B(R), the dominated convergence theorem for vector measures will allow us

to conclude. L

For a = 2, when E is orthogonal projection valued, i.e., when for every A € BO(R) E(A)
is Hermitian, T is not only additive but also unitary, namely, Tt = ™t =1 (I'is the
identity operator). While, the martingale difference case corresponds to operator measures

whose values are differences of increasing orthogonal projections.

In general, and in contrast to unitary operators, (a,f)-bounded groups T (T is

additive with T = 1) are not shifts. This can be seen as follows. Let X = {xn}nel be a

T .
discrete time (a,w)-bounded process, 1 < a < +w, Xn = J emde(ﬁ), and let Z be of
-x
r
bounded variation. Then, for any trigonometric polynomial P, IIJ P(6)dZ(0)]| a s
-x

x
J |P(6)|d|Z|(8) where |Z] is the total variation measure. It is then not difficult to see
-7

(as proved below) that X has a well defined shift if and only if the following condition

x

T
holds: if for some P, ||J P(6)dZ(O)l, = O, then J |P(6)|d|Z](6) = 0. But for dZ(f) =
~x

-x

Z4H_y 0)(0) = Hig 11(6)}d0, where Z € L%?®), Z # 0, this cannot happen unless P = 0. To
prove the above claim, i.e., to verify that the shift is a well defined operator we need to

show that the above stated condition and Getoor's [G] (C,) condition are the same. Let

r S
(C,) be satisfied, then || P(O)dZ(B)Ila = 0 gives ||J emoP(B)dZ(O)Ila =0forallnel
-r -

Hence, by the uniqueness of the Fourier transform, PdZ = 0 = |P|d|Z|. Hence
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1 X X '
| P11z = 0. Now if ||J P(8)dz(8)] , = 0, impnesj IP(6)[d|Z](8) = 0. We have
Y -

-

. T .
| o”“’vw)dzw)na < J 16"%P(9)|d|Z(6) = 0, and Getoor's (C,) condition is verified.

A -x

After these preliminaries, we can now state the main result of this section. Again, we
say that T satisfies the pointwise ergodic theorem whenever for any g € La(?) the averages

T
! Ttg(w)dt, T > 0, w € Q, converge a.s. (?), with of course in discrete time, the
T T

N
integral replaced by W}&—l z Tng(u). We only state the result for 2 < a < +w, since the
' n=-N

case a ¢ 2 is already in section 3 and since the corresponding statement is slightly

different. For 2 < a < +w, the dominating inequality (2.1) becomes IIJ deg”a <
R
]]g]]a(J 1£] €A/ ¢ 5 0 (see [P], the result there is actually not given for R but for
R
a compact space and also not for operator measures, however, with arguments as in [H3]

the above stated inequality can be obtained).

Theorem 4.6. Let 2 < a < +«. Let T be (aw)-bounded with representing operator
measure E and of a+¢-atomistic dominating measure. Then T satisfies the pointwise

ergodic theorem if and only if lim E {0 < [¢] < 27"} =0,as forallge LY?). Let T
n-+w

be (a,8)-bounded, 3 < +w, T satisfies the pointwise ergodic theorem.

Proof. As in Theorem 3.2, 3.3, and 3.7. s

For operators between Hilbert spaces, Theorem 4.6 has the following interesting

particular case. Let T : L2(?) —_— Lz(?) be invertible with also sug IT")| < +w, and let
ne
10 =1. By a result of Sz.-Nagy [Sz.N], there exists a unitary operator U and an invertible

N
Hermitian operator Q such that T = Q"IUQ. Hence, for any g € L2(1’), I a.nTng||§ <
n=—N

— 2 N x N . 2 N L3
1Q7N%IQI% £ s U"eis = K[ | £ a ™ alegl? < KilglZsupl £ a2,
n=—N - n=—N 0 n=-N
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and the group T is (2,«)-bounded. In other words, power bounded and invertible power
bounded discrete groups on L2(1’) are exactly the Fourier transforms of the ¢-additive,

spectral measures from the Borel o~algebra B(]-x,x]) to B(LQ) (the (2,0)-bounded defining

N N :
property, i.e., || & ::an“gll2 < Kliglipsup| Z anemal trivially gives sug 1T < +w).
n=-N ¢ n=-N ne

Combining this observation with the previous results we get.

Corollary 4.7. Let T be an invertible bounded linear operator on L2(7) such that

su;l; HTnll < +w. Then, T is (2,0)-bounded with associated spectral measure E, and it
ne

satisfies the pointwise ergodic theorem if and only if 1im Eg{ 0< €l <2} =0, as.
n-+w

for ail g € L2(7).

Remark 4.8. It is not clear to us how Corollary 4.7 relates to the usual positivity
assumption encountered in ergodic theory. In particular, we do not know how it relates to
de la Torre's [T) ergodic theorem, i.e., we do not understand why for T positive (Tf > 0

whenever f > 0) the condition lim E_{ 0 < |€] < 277} = 0, a.s. is always satisfied. A

{
ntw 8
better understanding (a characterization?) of the effects of positivity on the spectral

measure is certainly the key to this problem. Unfortunately, Theorem 4.6 does not give
any information about, say, the ergodicity of the isometries in LY?), a # 2. It is shown in
[CH] that the class of moving averages of Lévy motion (for which the shift exists and is an
invertible isometry) and the (a,o)-bounded class are disjoints (the results in [CH] continue

to hold for shifts T such that sug IT"|| < +w). However, isometries and more generally
ne

power bounded and invertible power bounded operators on La’(?) do admit another type of
spectral representation (see Berkson and Gillespie [BG]) which for & = 2 corresponds to

(2,)-boundedness. This spectral representation might help to study the ergodicity of such
operators on La(?), at?.

It is clear that there are various potential extensions and generalizations of the above
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results. These include, for example, the local ergodic theorem or the pointwise ergodic
theorem for "pseudo” Hermitian operators (see [K]), more generally for operators for which
some kind of spectral representation with respect to a non orthogonally scattered operator
measure holds. Except for random fields, to which our last section is devoted, we only
state as a sample, a result for which the passage from unitary to power bounded and

invertible power bounded operators is rather safe.

For unitary operators Jajte [J] proved that the convergence of the ergodic averages
and the existence of the ergodic Hilbert transform are equivalent. Combining Jajte's

arguments as well as the methods presented here, this equivalence holds more generally:

Corollary 4.9. Let T be an invertible bounded linear operator on L2(7’) such that
N—1

sup |IT?)| < +w. Then, lim% T TUg exists a.3. P, for every g € L2(7) if and only if 1im
neg N~o n=0 N-w
by Tng/n exists a.s. P, for every g € LQ(?).

0<|n|<N

5. The Spectral SLLN for Random Fields

We assume to the end of this paper that X = {xt}tc-Rm is a strongly continuous, norm
bounded random field. It is easily seen that the univariate (a,8)-boundedness, 1 < a < 2,
definition given in [H3] carries over to the case of fields, in fact, even to the LCA

framework). Essentially as in [H3], it also follows that X is { a,4)-bounded if and only if X,

i Mooda e ]t | €a | yitat |
= l esee 1“‘ 1 l‘"“ l._ » nSm dZ yoeeby
/\=(/\1,-{1T]/\m)-o+m L,\, .[_,\m( T)e ( ‘Xm_)e (§1--&y) in

L%?), uniformly on the compacts, where Z : Bo(Rm) —— LO(?) has finite (a,f)-variation.

The multidimensional version of Grothendieck's inequality continue to hold (see [P)).

Lemma 5.1. Let the random field X be (a,»)bounded with associated random measure Z.

Then, there exists a finite positive measure » on R™ such that
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1] o2l ([ ml €702, (5.1)

for all f € L4(v).

For fields, averaging is always more delicate than for processes. Throughout, we
follow Gaposhkin {G1], denote by |A p[ the volume of A » and study the averages, o pX(w)

= T%—T J X(t, w)dt, p > 0, w € 0, where X(t, w) = X(tl, by “toy by w), dt =

poA,
dtldt2...dtm, and where the Ap satisfy the following three conditions:

(i) For each p, Ap is a bounded convex body containing the origin.
(i) For 0 < p, < p < 9, A, C A, and Apl 1Al -0
=Ty
X
(i11) There exist two positive constants K, and K, such that the length d(p) of any chord

of Ap passing through the origin satisfies Klp <d(p) ¢ Kop, p2 p, > 0.

It is clear that n—dimensional spheres of radius p with center at the origin satisfy the
above three conditions. This is also true of n—dimensional cubes centered at the origin with
side of length p. Rectangles with do not flatten out also satisfy these conditions. We

finally say that X satisfies the SLLN whenever lim o pX = 0, with probability one. For ¢
pto

eR™ weset [£] = (6 + 62+ - + £2)1/2, and then have.

Theorem 5.2. Let the random field X be (aw)-bounded, with random measure Z and
a/2-atomistic dominating measure. Then, X satisfies the SLLN if and only if for almost all

w lim Z{|¢] < 27P}(w) =0.
p+o

Proof. The proof requires only adjustments from the univariate results and so will only be

; = - - - —P
sketched. Again, apx = (apX 0,X) + (o, X osz) + (asz Z{|¢] <277} +

2{|€| <27P}. Since, llxt||05 K, using condition (ii) we easily see that for n < p < n+1,
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lo X = oy Xilg S K{I1/1A, 1 = 1/1A 11 %loXIg + A, - A 1%/]A, 1% <Kn™®

Hence, with probability one, lim sup |o X-anX| = 0. For the third bracket, let
n-x n<p<n+l p
Kp({) = T%—T J S dt, where et = _Eleltj€j, then clearly Usz =
P Ap J

JRmK2p(§)dZ({). Since (i) and (i) give |K (€) ~ 1] < K2P|¢| whenever [£| < 27P,

and |K_(&)] < K/(2P|¢]) for |¢] 2 27P, breaking R™ into {|¢] < 2P} and {|¢] 2 2P},
2

x
we get using Lemma 5.1, £ £|o px -Z {|€] < 2P}|% < +=. Hence, for almost all w,

p=l1 2
lim ¢ X -Z{|€] <2P} =0. For the middle bracket, we note that Lemma 3.1 with
p-+w 2P

its notations continue to hold, we apply Lemma 5.1 and we also break R™ into four pieces:
(el <27, 2P l<g ), e PrRege) <), (161 > 1) For [¢] <2, we

have using (ii) and (iii) |K, (§) - Kak I(§)| <K|¢| Iak _ak—l" For, 2-p—1<|€|S2—p+k

'

wehave by () [K, (6K, (O] <Klay~ay1/lay]. For, 2 PHK 6] <1, we use

the previous inequality and the fact that (i) and (iii) gives IKak(f)l < Klakfl—l to get

K, (9 =K, (& <Klay-a,_|/la,_|1¢a,_,|. Finally, when |¢| > 1, again (i)

3 -1
and (i) gives |K, (6)] < Kla, €| ™", hence K, (O -K, (O] ¢ K|a,_€7). Now, as
in the proof of Lemma 3.1, these estimate lead, with the atomistic assumption, to four

convergent series and the result follows. -

Remark 5.3. The requirement on the A p's are just set to ensure that the kernels K y do
satisfy the right estimates and so, for any average for which such estimates hold, Theorem
5.2 continue to be true. It is also clear that Theorem 3.3, 3.5, and 3.7 admit
multidimensional versions and that as in [G1], the sequence {27P} can be replaced by more

general sequences.
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